

TOPOLOGY - III, EXERCISE SHEET 5

Exercise 1. *Warm up* (easy)

- (1) Let X be a contractible space, show that $H_n(X) = 0$ for all $n > 0$.
- (2) Show that for every space X , the cone $CX := (X \times [0, 1]) / (X \times \{0\})$ is contractible.
- (3) Show that the relative homology group $H_0(X, A) = 0$ for a space X and a sub-space $A \subseteq X$ if and only if A meets X at every path connected component of X .

Exercise 2. *Homomorphism on homology induced by inclusion map.* (easy)

- (1) Recall that a subspace $A \subseteq X$ is called a retract of X if there exists a continuous map $r : X \rightarrow A$ such that $r \circ i = Id_A$, where $i : A \hookrightarrow X$ is the inclusion map. Show that if a subspace A is a retract of a space X , then the induced map $i_* : H_n(A) \rightarrow H_n(X)$ is injective for all n .
- (2) Give an example of a subspace A of a space X such that the map $i_* : H_n(A) \rightarrow H_n(X)$ is not injective for some n .

Exercise 3. *Computation of some relative homology groups* (medium)

Compute the relative homology groups $H_i(X, A)$ for the following pairs of spaces with $A \subseteq X$:

- (1) (S^2, A) where A is a finite subset of points of S^2 .
- (2) $(D^2, \partial D^2)$, where D^2 is the closed unit disc in \mathbb{R}^2 .
- (3) (\mathbb{T}^2, A) , where A is a finite set of points.
- (4) (\mathbb{T}^2, S^1) where the copy of $S^1 \subseteq \mathbb{T} := S^1 \times S^1$ is given by the diagonal inclusion:

$$i : S^1 \rightarrow S^1 \times S^1, z \mapsto (z, z).$$

What are the relative homology groups if the inclusion is given by $i(z) = (z, p)$ for a fixed $p \in S^1$?

- (5) (\mathbb{R}, \mathbb{Q}) .

Exercise 4. (medium)

Through this exercise we will fill in the details of the proof of the following fact:

Let $F : X \times I \rightarrow Y$ be a homotopy between the maps $f, g : X \rightarrow Y$. Then f, g induce homotopy equivalent morphisms of complexes $C_\bullet(X) \rightarrow C_\bullet(Y)$.

- (1) Consider the prism $\Delta^n \times [0, 1]$. We label $\Delta^n \times \{0\}$ as $[v_0, \dots, v_n]$ and label $\Delta^n \times \{1\}$ as $[w_0, \dots, w_n]$ with w_i lying over v_i . For $i = 0, \dots, n$, let Γ_i be the $(n+1)$ -simplex $[v_0, \dots, v_i, w_i, \dots, w_n]$. Show that Γ_i and Γ_j intersect at an n -simplex if and only if

$|i - j| = 1$. Also prove that

$$\Delta^n \times [0, 1] = \bigcup_{i=0}^n \Gamma_i.$$

Hint: Draw a picture for $n = 1, 2$.

(2) For all n , consider the map

$$P : C_n(X) \rightarrow C_{n+1}(Y), \sigma \mapsto \sum_{i=0}^n (-1)^n F(\sigma \times \text{Id}_{[0,1]})|_{\Gamma_i}.$$

Show that P is a homotopy between the complex maps g_* and f_* . That is:

$$g_* - f_* = \partial P + P\partial.$$